Kicken der Atome induziert Transparenz
Das Design komplexer Materialien mit neuen Funktionalitäten ergibt sich oft aus dem Zusammenspiel verschiedener Materiekomponenten, wie den Elektronen und Kristallschwingungen - den sogenannten Phononen. Die Kopplung zwischen diesen Materiekomponenten kann inkohärenter oder kohärenter Natur sein. Während ersteres in der Regel durch die temperaturbedingten Kernfluktuationen zustande kommt, wird letzteres erreicht, wenn sich die Kristallschwingungen und die elektronischen Anregungen mit gleicher Frequenz und konstanter Phasendifferenz im Material ausbreiten.
Hier nutzen die Forscher die resonante Schwingungsanregung, um das Kristallfeld um die Cu2+-Ionen in einem CuGeO3-Kristall kohärent zu steuern. Dieses Material ist vor allem aus zwei Gründen ideal: Die Phononen können selektiv durch Laserpumpen im mittleren Infrarot angeregt werden und die drei charakteristischen d-d-Elektronenübergänge bei hoher Energie (etwa 1,7eV) sind von anderen spektralen Merkmalen, die die Elektron-Phonon-Kopplung stören könnten, isoliert.
Insbesondere die resonante Anregung IR-aktiver Phononenmoden, die nichtlinear an Raman-aktive Phononenmoden gekoppelt sind, führt zu einer kohärenten Schwingungsbewegung des apikalen Sauerstoffs, die die Energie und Oszillatorstärke des Orbitalübergangs zwischen verschiedenen Kristallniveaus an Cu2+-Ionen dynamisch kontrolliert. Durch die Kontrolle der Parameter der Phononenpumpschemata ist es dann möglich, eine Transparenz im Energiefenster der d-d-elektronischen Übergänge zu erreichen.
"Es ist faszinierend, wie unterschiedliche Materieanregungen aus völlig verschiedenen Energiebereichen kohärent interagieren und die makroskopischen Eigenschaften eines Kristalls beeinflussen können", sagt Simone Latini, Post-Doc und ehemaliger Humboldt-Stipendiat am MPSD. "Wir untersuchen derzeit, ob ein ähnliches Phänomen auch anderswo zu beobachten ist, und wir haben Hinweise, dass es in zweidimensionalen Materialien wie WS2 vorhanden sein könnte."
"Diese Studie zeigt, wie weit wir experimentell in Bezug auf die Kontrolle von Materie mit ultrakurzen Lichtpulsen gekommen sind", sagt Alexandre Marciniak, der zusammen mit Stefano Marcantoni von der Universität Triest Erstautor dieser Arbeit ist. "Es ist in der Tat bemerkenswert, wie wir die engen mikroskopischen Beziehungen zwischen Anregungen in einem Material enthüllen können und wie dieses Verständnis dabei helfen wird, funktionale Geräte herzustellen, die bei Bedarf transparent werden können."
Das Projekt, das hauptsächlich vom Europäischen Forschungsrat (ERC) finanziell unterstützt wurde (Projekt INCEPT), wurde im Q4Q-Labor unter der Leitung von Daniele Fausti von der Universität Triest beim Elettra-Sincrotrone Trieste durchgeführt. Das theoretische Modell wurde in der Gruppe von Fabio Benatti an der Universität Triest entwickelt, in Zusammenarbeit mit Forschern aus der Gruppe von Ángel Rubio am MPSD und Jeroen van den Brink am IFW / Institut für Theoretische Physik in Dresden.
"Diese Arbeit eröffnet neue Wege zur Kontrolle und zum Design von Phänomenen in korrelierten und topologischen Materialien“, so MPSD-Theorie-Direktor Ángel Rubio.