Verborgene Eigenschaften der Lichtabsorption von Titandioxid aufgedeckt
MPSD-Forscher enthüllen die verborgenen Eigenschaften von Titandioxid
Anatas TiO2 hat vielfältige Einsatzgebiete: von Photovoltaik und Photokatalyse bis hin zu selbstreinigenden Gläsern sowie Wasser- und Luftreinigung. Alle diese Anwendungen basieren auf der Absorption von Licht und deren anschließender Umwandlung in elektrische Ladungen. Angesichts seiner weit verbreiteten Verwendung, war TiO2 eines der am meisten untersuchten Materialien im zwanzigsten Jahrhundert, sowohl experimentell als auch theoretisch. Paradoxerweise blieb die tatsächliche Natur des Lichtabsorptionsprozesses bisher noch ungeklärt.
Wenn Licht auf einem Halbleitermaterial trifft werden entweder freie negative Ladungen (Elektronen), positive Ladungen (Löcher) oder gebundene Elektron-Loch-Paare (Exzitonen) erzeugt. Exzitonen können sowohl Energie als auch Ladung transportieren und sind die Basis eines ganzen Forschungsfeldes, welches sich um neuartige „Next-Generation“ Elektronik bemüht. In Anlehnung an Elektronik wird das Feld „Exzitonik“ genannt.
Bisher waren Wissenschaftler nicht in der Lage mit Sicherheit zu identifizieren, welches physikalische Objekt für die Lichtabsorption und entsprechend für die charakteristischen Eigenschaften von TiO2 verantwortlich war.
Die Gruppe von Prof. Angel Rubio an der Theorieabteilung der MPSD zusammen mit ihren internationalen Kooperationspartner hat dieses Problem mit einer Kombination aus hochmodernen ab-initio Simulationen zusammen mit modernsten experimentellen Methoden gelöst. Relevant sind hierbei die winkelaufgelösten Photoelektronenspektroskopie (eng. ARPES), die die Energetik der Elektronen (Bandstruktur) entlang der verschiedenen Achsen im Festkörper abbildet und die Spektroskopische Ellipsometrie, welche die makroskopischen optischen Parameter (Dielektrizitätskonstante etc.) des Festkörpers mit Präzision und ultraschneller zweidimensionaler Tief-Ultraviolett-Spektroskopie bestimmt und erstmals bei der Untersuchung von Materialien eingesetzt wurde. Sie fanden heraus, dass die Schwelle des Absorptionsspektrums auf ein stark gebundenes Exziton zurückzuführen ist, das zwei bemerkenswerte neuartige Eigenschaften aufweist:
a) es ist auf eine zweidimensionalen (2D) Ebene des dreidimensionalen Gitters des Materials beschränkt. Dies wäre der erste bekannte Fall einer solchen Eigenschaft.
b) Dieses 2D-Exciton ist bei Raumtemperatur stabil und robust gegen Defekte, die in jeder Art von TiO2 (Einkristallen, Dünnfilmen und sogar Nanopartikeln) vorhanden sind.
Diese "Immunität" des Exzitons zu weitreichenden strukturellen Störungen und Defekten impliziert, dass es die ankommende Energie in Form von Licht speichern und auf der Nanoskala selektiv führen kann. Dies verspricht eine enorme Verbesserung gegenüber der gegenwärtigen Technologie, bei der die herkömmlichen Anregungsvorgänge üblicherweise extrem ineffizient sind, da die absorbierte Lichtenergie nicht gespeichert , sondern als Wärme auf das Kristallgitter abgetragen wird.
"Der Einsatz modernster experimenteller Techniken und Theorie ermöglicht uns nicht nur bekannte Materialien besser zu verstehen, sondern auch neue, noch effizientere Materialien für Energieanwendungen zu entwerfen", sagt Adriel Domínguez. Darüber hinaus können die Exzitonparameter durch eine Vielzahl von externen und internen Reizen (Temperatur, Druck, überschüssige Elektronendichte) abgestimmt werden, was ein leistungsfähiges, genaues und billiges Erkennungsschema für Sensoren mit optischer Auslesung verspricht. "Angesichts der preiswerten und leicht herzustellenden Anatas-TiO2-Materialien sind diese Erkenntnisse für solche Anwendungen und darüber hinaus von entscheidender Bedeutung, um zu verstehen, wie elektrische Ladungen entstehen, nachdem das Licht absorbiert worden ist", sagt Prof. Majed Chergui von der EPFL. "Diese sind die Hauptakteure in der Solarenergieumwandlung und Photokatalyse."
Prof. Angel Rubio betont, dass diese Art von Studien, die sich aus der engen Zusammenarbeit zwischen theoretischen und experimentellen Gruppen ergeben, wesentlich sind, um den mikroskopischen Ursprung der Lichtenergieumwandlung und der Energieübertragungsprozesse für photovoltaische und photokatalytische Anwendungen relevanten Materialien zu enthüllen. Und so neue künstliche photosynthetische anorganische Materialien zu gestalten. "Wir werden weiterhin mit unseren internationalen Partnern in der EPFL in Lausanne zusammenarbeiten, um zu verstehen, wie sich diese Art von Grundmaterialien sowie viele andere niederdimensionale Oxid-Nanostrukturen verhalten, wenn sie durch äußere Reize wie das Licht aus dem Gleichgewicht getrieben werden.“
Diese Arbeit wurde in Zusammenarbeit vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) mit dem Lausanner Zentrum für Ultrafast Science (LACS) und dem Institut für Physik (IPHYS), der Universität Freiburg, der Università Campus Bio-Medico di Roma, Center for Life Nano Science in der Università di Roma "La Sapienza" und der Universidad del Pais Vasco durchgeführt. Die Finanzierung erfolgte durch die Schweizerischen National Science Foundation (SNSF, NCCR: MUST), dem European Research Council Advanced Grants ("DYNAMOX" und "Qspec-Newmat"), Grupos Consolidados del Gobierno Vasco und den Österreichischen Wissenschaftsfonds.