Matteo Puviani - Strongly correlated Floquet systems: Cluster Perturbation Theory approach
CFEL Theory Seminar
- Date: Feb 8, 2017
- Time: 11:00 AM - 12:00 PM (Local Time Germany)
- Speaker: Matteo Puviani
- University Modena and Reggio nell’Emilia, Italy
- Location: CFEL (Bldg. 99)
- Room: Seminar Room IV, O1.111
- Host: Angel Rubio
In this seminar, I will present a scheme that allows to treat photo-induced phenomena in the presence of many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time-periodic field and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon-dressed quasiparticle excitations. In particular, I will discuss the combined effects of on-site e-e interaction and of a time-periodic field on an infinite 1D Hubbard lattice: an unconventional Mott insulator-to-metal transition occurs for given intensities and frequencies of the applied field [2], while in the extended finite chain edge states appear in correspondence of the “bulk” gap regions for certain values of the field intensity [3].
[1] Gomez-Leon, Andres, et al., “Floquet-Bloch theory and Topology in Periodically Driven Lattices”. Physical Review Letters, 110, 200403-1 200403-5, (2013)
[2] Puviani, M. and Manghi, F., “Periodically Driven Interacting Electrons in one dimension: Many-body Floquet Approach”, Physical Review B 94, 161111
[3] Puviani, M. and Manghi, F., “Theory of photon-driven correlated electrons in one dimension”, accepted (Journal of Physics: Conference Series)